Quanta BioDesign代理产品介绍


Quanta BioDesign代理产品介绍

简要描述:Quanta BioDesign是美国著名的dPEG系列产品提供商

详细介绍

产品咨询

The term “dPEG®” is Quanta BioDesigns trademarked acronym for “discrete poly(ethylene glycol)” or “discrete PEG”. Each of our products represents a single compound with a unique, specific, single molecular weight (MW) PEG synthesized de novo from pure, small units (e.g., triethylene glycol or tetraethylene glycol). In our numbering system, we name compounds as dPEG®nn, where nn stands for the number of oxygen atoms in the spacer unit. We do this in order to simplify the naming of the compounds. Our catalog has the exact structure of the single compound. Thus, for example, product number 10244, amino-dPEG®4-acid, has an amino group on one end, four (4) ethylene oxide units, and a carboxylic acid group on the other end, as shown beside:

Some people prefer the term “monodisperse” to describe these PEG compounds. While not an inappropriate term, “monodisperse” implies either that

  1. the compounds are single compounds purified from a polymeric mixture, or
  2. there is only one compound formed from a polymeric process, which is purely a theoretical concept. We prefer the term “discrete”, since these compounds are synthesized as single MW compounds from pure starting materials via standard organic methodology. A discrete PEG is a single compound having no other PEG homologues in it.

No. Our dPEG®s are prepared de novo from pure starting materials using standard organic chemistry techniques for synthesis and purification. The only PEG in our dPEG®s is the dPEG® described in the name.

We offer an intermediate range of PEG linkers and spacers ranging in molecular weights from 200 to about 1,300 Daltons. This range has heretofore been unutilized or underutilized due primarily to the lack of commercially available material and functionality. Most people using PEGs have focused either on tiny PEGs (200 D or smaller), which they synthesize themselves or on the very large polydisperse conventional PEGs (2,000-3,400 D up to 50,000 D or higher). Quanta has been making these compounds for only the past 5 years, and we are in a l earning process, starting with the smaller units (nn = 4) and working to the higher/larger sizes (nn = 8, 12 and 24).

There are a number of other advantages with our low and mid range MWs versus the conventional PEGs, as well as the conventional alkyl spacer containing crosslinkers (see discussions at Questions 4 and 5, below).

Many of our customers come to us thinking that they need a large PEG in order to achieve water solubility, eliminate aggregation or obtain reduced antigenicity/immunogenicity of their target molecule. In practice, many customers find that they achieve the results they desire with our intermediate range PEGs. These smaller MWs have not been available to explore all of the options or to find an optimal substitution/modification MW. It is not necessary in many cases to give a molecule, even a large biological (e.g., an antibody), a high MW PEG, to eliminate aggregation issues.

We also do not yet offer very large dPEG® compounds because of the learning curve required to develop processes for synthesizing these large molecules. Numerous chemical and physical properties come into play with the larger molecules that make synthesis of very long chain PEGs challenging. The process development for these molecules is underway, but it is incomplete. Our first foray into very large dPEG® molecules likely will come in the form of branched dPEG™s. These dPEG®>s will use shorter chains (4, 8, or 12 ethylene oxide units), but will contain 3 to 9 branches, and potentially 27, providing our customers with high molecular weight PEGs as discrete single compounds.

Conventional PEGs present some serious issues and challenges when used to solve drug design problems or to optimize drug design. Foremost is the fact that conventional PEGs, being polymers, are offered as substantial mixtures and therefore come as a large range of MW compounds. The MW given is simple an average MW. These mixtures are also intractable mixtures of compounds.

In addition, those underivatized base materials reproducibly available for development start at MWs above 2,000 D. This lower limit of commercial availability limits the range of applications for conventional PEGs. Further, as mentioned above, the critical issue for conventional PEGs is polydispersity. For example, a polymer of MW 2,000 conservatively contains a mixture of 30-50 compounds. Polydispersity creates numerous problems in the collection of conventional drug data, including critical pharmacokinetics. Mixtures create production and reproduction nightmares inherent in working with and chemically manipulating such mixtures, which is so vital in both therapeutic and diagnostic testing and approval. Which compound is causing the effects … positive or negative-gamma T he advantages of implementing pharmaceutical product development and modification using a single compound become obvious.

Most commercial applications of conventional PEGs have to date been directed towards using the conventional PEG as a drug carrier to increase blood circulation times, thus requiring the use of high MW compounds. This approach, though successful, has entailed much expense in dealing with the challenges of controlling a very complex mixture throughout the production and scale up of these drugs. Difficulties in finding reliable, reproducible supplies of the starting, underivatized (generally methoxy-terminated) conventional, polymeric PEGs have aggravated the problem, i.e., the reproducibility of the original polymeric process.

Another significant PEG application is drug conjugation. With conventional PEGs, several problems arise. First, the range and mixture of conjugates formed is huge. Second, knowing the pharmacokinetics of such a complex mixture is intrinsically problematic. Third, the shortest average commercially available conventional PEG linker is in the range of several 100s of Angstroms, and the option of looking at potentially more optimal ranges of conjugates simply has not been available. With our dPEG® offerings of discrete MW crosslinkers, this situation is changing and will continue to improve as more and more options are available.

Quanta BioDesigns dPEG® compounds eliminate the problems associated with polydispersity:
a. Single compound applications can now be modified with single compound dPEG®s in order to maintain their analytical and chemical uniqueness;
b. When bifunctional dPEG®s are used, the size and spatial properties are again unique and will generate a compound for testing and application that has unique properties and not a range of them; and,
c. Processing and scale-up is extremely simplified when having to only purify a single compound and not a complex mixture.

Introduction

While the aliphatic methylene chain spacers, X-(CH2)n-Y, have been useful for many years, they have serious limitations and drawbacks and have needed to be replaced for some time. Quanta BioDesign, Ltd. has introduced a wide range of crosslinkers and related products, e.g., biotinylation reagents, containing discrete polyethylene glycol (dPEG®) -based spacers. With Quantas dPEG® products, the end user now has a product that not only overcomes the drawbacks of the alkyl linkers and spacers but also provides many new options and advantages that cannot be obtained with conventional alkyl linkers and spacers.

Water solubility and hydrophilicity

Quantas dPEG® linkers are extremely water soluble and hydrophilic, while the alkyl linkers are neither. The water solubility and hydrophilicity of our dPEG®s opens up an unexplored range of applications. In contrast, although widely used, the opposite properties in the alkyl spacers have severely limited their actual and potential uses in biological systems. At least one company (Pierce) has commercially developed the sulfo-NHS esters, which are soluble in water, but this apparent solubility disappears once the label or crosslinker is reacted, and the inherent hydrophobic properties return, and the disadvantages become apparent. Unfortunay, the inexperienced user is fooled into thinking this apparent hydrophilicity is inherent to the reagents use; it is not. The hydrophobic characteristics of the alkyl linkers and spacers are most often manifest through increased aggregation and precipitation in the modified or crosslinked products in which they are used and incorporated. With Quantas dPEG®-containing compounds, this trend is compley reversed. The dPEG®s presence adds water solubility and hydrophilicity not in the original compound, or enhances whatever is inherent in the biological compound or drug being reacted with the dPEG® derivative. The extent depends on many variable, including the size of the dPEG® reacted.

For example, the biotinylation reagents using the LC linker (amino caproic acid) compared to our biotinylation reagent containing the dPEG®4 spacer offer a startling contrast. Where the LC linker has been used, once the biological compound is biotinylated, the LC-biotin with the linker will seek hydrophobic regions in the protein and hide in them, making it less available to the streptavidin. Moreover, LC-biotin compounds have serious and very short term agglomeration and precipitation problems. Pierce generated some agglomeration data that compares the sulfo-NHS-LC-biotin (the most popular biotinylation reagent on the market) with our NHS-dPEG®4 biotin, which has the dPEG®4 spacer (the length of 2x LC). The data show that human IgG biotinylated with the sulfo-NHS-LC biotin precipitates within a couple of weeks, while human IgG biotinylated NHS-dPEG®4 biotin (PN 10200) shows no sign of agglomeration at three weeks. The results are dramatic and surprising considering the sizes. As more customers use our products, we expect to hear many similar outcomes.

In addition to being water soluble, the dPEG® linkers are organic soluble and can be used in organic media when this is desirable or necessary. This is true, for example, with some of the more reactive NHS esters and the like.

Application Note: Because some of our crosslinkers are viscous, we often recommend our customers initially dissolve the compound in an organic solvent. With Quantas peptide synthesis dPEG® reagents, as well as with many of the modification reagents, the application is already going into an organic medium, so this property becomes essential.

Immunogenicity

Quantas dPEG®-linked compounds are essentially non-immunogenic, while alkyl linkers containing more than two or three methylene groups are highly immunogenic. This is a huge advantage for dPEG®-linked compounds and a tremendous problem for alkyl linkers. Immunogenicity creates many problems for biological compounds, many of which can be solved or improved by switching to dPEG® products. We have customers using our MAL-dPEG®x-NHS esters in place of the well known and widely used SMCC and related heterobifunctional crosslinkers with dramatic results when conjugating antigens to carriers for antibody production, and the final (WORD?????) of the antibodies produced. Our customers can now extend the antigen away from the carrier to various distances with no immunogenicity in the spacer … none!! It will be interesting to see this generally applied. Now antibodies generated using standard carriers and our dPEG®s have the potential to be of far superior quality.

Non-immunogenicity has been shown repeatedly for the polydisperse polymeric PEGs, usually of high molecular weight, where we would expect any manifestations to be amplified. This is a major reason our dPEG®s have found such extensive application.

Distance/spacing and distance/spacing control

Applications incorporating conventional alkyl spacers could benefit from the ability to use longer spacers than those currently available, but serious problems develop with their inclusion. Alkyl linkers are poorly water-soluble and are immunogenic from the start. Lengthening the spacer makes the crosslinker less water-soluble (and often less soluble in organic solvents also), more hydrophobic, and more immunogenic. That is why little to no change in the structural range of commercial available crosslinkers has occurred for more than 20 years. In fact, changes that have occurred have often been to shorter, not longer, chain lengths of the methylene chain spacers.

In contrast, however, dPEG® spacers are extremely water soluble, hydrophilic and non-immunogenic. These properties offer no restriction to lengthening the linkers. In addition, since we are able to make the dPEG®s, which are single compounds, of any length starting with dPEG®2, with the recent introduction of our dPEG®24 product line, the chains are now approaching 90 Angstroms (90 Å) in length (linear). Quantas customers can now select spacer chain lengths from 10 to 90 Å. Researchers developing new drugs, as well as other targeting (often diagnostic) molecules, are relying more often on modeling techniques where they can predict the optimal distances for making chemical modifications. Giving them this range of options makes Quantas dPEG®s additionally attractive and valuable. We believe this is the wave of the future for crosslinking, labeling, and chemical modification. Modification reagents

Quanta BioDesign offers an expanding line of commercial products, which has no counterpart with alkyl chains as above. These are specifically designed to be chemically bonded to a drug, protein, or other biological compound with the objective of (a) increasing its water solubility and/or (b) decreasing its immunogenicity, antigenicity, or toxicity. We have several products which are methoxy-terminated over a MW range of about 300 to over 1,200 D that incorporate the NHS ester. Moreover, we are expanding that line by adding two options with the NHS-carbonate activated linkage, which offer the potential to be released (e.g., as a pro-drug). We also offer methoxy-terminated products that can bond to acids, aldehydes, and sulfhydryls. The latter are of growing interest as molecular engineers can introduce the sulfhydryl almost at will using site-directed mutagenesis, and most peptides and oligos can be sulfhydryl terminated or modified. In late 2005, we plan to introduce our first branched products for use in chemical modification. This will give researchers the options of higher molecular weight dPEG®s, as well as some unique dPEG®s not previously commercially available in any format.

Note: The different physical properties of the dPEG®-containing crosslinkers and modification reagents are initially perceived to be a drawback. Many of the lower MW materials are viscous liquids that can be difficult to handle. However, we find that with a little education and the initial results, our customers adapt very rapidly and creatively. Once they become accustomed to these physical properties, they can use them to their advantage by proper use of solvents and solvent systems.

Summary

For most crosslinking and labeling applications where a spacer is desired or required, the properties of the dPEG®s outlined above should cause them to displace most applications with the aliphatic spacers. Furthermore, given the longer and multiple spacer options available for the dPEG®s, end users have new options and new extensions of applications available to them. In addition, Quantas low MW dPEG®s open up applications not available to the higher MW polydisperse PEGs offered by companies like Nektar Therapeutics (the lowest MWs are typically 2,000 or 3,400, average n about = 45 and 75, respectively). Moreover, polydisperse PEGs are complex polymer mixtures, while Quantas discrete PEGs are single compounds, giving the end-user tremendous advantages over polydisperse PEGs at all steps of the application or process.

Quanta BioDesign, Ltd. is committed to developing highly cost effective, high purity, and proprietary processes for making the entire range of useful dPEG® compounds and their derivatives for application to the widest range of therapeutic, diagnostic, and molecular engineering applications. Our compounds often open doors that have never been opened before due to the absence of the proper molecular tools. These tools are now offered and are being developed by Quanta BioDesign, Ltd. Finally, we are extremely interested in getting suggestions and feedback from our customers about new options in making other valuable dPEG® products.

We are located in a beautiful northern suburb of Columbus, Ohio, the home of The Ohio State University, which is one of the best public universities in the United States and the home of the world-famous Ohio State Buckeyes sports teams. A recent survey positioned Powell as the 18th nicest city in the country. Yes, and we are really in Ohio.

Product#  Product Name                                 
10000  Bioconjugate Techniques   
10010  Biotin-dPEG..-PFP ester                             
10012  MBS (m-maleimidobenzoyl NHS ester)                
10014  Tris (2-carboxyethyl)phosphine Hydrochloride (TCEP)    
10015  Bis-dPEG..-PFP ester                               
10033  Fmoc-N-amido-dPEG..-acid                          
10041  Amino-dPEG..-t-boc-hydrazide                       
10043  Fmoc-N-amido-dPEG..-t-boc-hydrazide                
10044  NHS-dPEG..-t-boc-hydrazide                         
10053  Fmoc-N-amido-dPEG..-acid                          
10061  Amino-dPEG..-t-butyl ester                          
10063  Fmoc-N-amido-dPEG..-acid                        
10064  MAL-dPEG..-NHS ester                             
10065  MAL dPEG..-acid                                  
10066  CBZ-N-amido-dPEG..-acid                           
10067  Amino-dPEG..-acid                                 
10156  S-acetyl-dPEG..-alcohol                             
10160  S-acetyl-dPEG..-alcohol                             
10166  Methoxytrityl-S-dPEG..-acid                         
10170  Amino-dPEG…-alcohol                              
10171  t-boc-N-amido-dPEG…-alcohol                        
10172  t-boc-N-amido-dPEG…-amine                         
10174  m-dPEG..-amine                                    
10175  m-dPEG..-amine                                    
10177  MPS-EDA.TFA                                     
10180  dPEG..-SATA acid (S-acetyl-dPEG..-acid)                
10181  dPEG..-SATA (S-acetyl-dPEG..-NHS ester)               
10182  dPEG..-SATA acid (S-acetyl-dPEG..-acid)                
10183  Thiol-dPEG..-acid                                   
10184  dPEG..-SATA (S-acetyl-dPEG..-NHS ester)               
10185  Hydroxy-dPEG..-t-butyl ester                          
10193  Biotin-dPEG..-NH.+TFA- 
10194  NHS-S-S-dPEG..-biotin   
10195  Biotin-dPEG…-MAL   
10196  Biotin-dPEG…-NH.   
10197  dPEG…-biotin acid   
10198  NHS-dPEG…-biotin   
10199  dPEG..-biotin acid   
10200  NHS-dPEG..-biotin   
10201  Biotin-dPEG..-MAL   
10202  NHS-dPEG..-biotinidase resistant biotin   
10205  NHS-biotin 
10210  MAL-dPEG..-t-boc-hydrazide   
10211  m-dPEG..-NHS ester   
10213  Fmoc-N-amido-dPEG..-acid   
10214  MAL-dPEG..-NHS ester   
10215  Bis-MAL-dPEG..   
10217  MPS (NHS-3-maleimidopropionate)   
10218  Biotin-dPEG..-cyanocobalamin   
10219  Biotin-dPEG..-hydrazide   
10220  t-boc-N-amido-dPEG..-acid   
10221  Amino-dPEG..-t-butyl ester   
10223  Hydroxy-dPEG..-t-butyl ester   
10224  Bis-dPEG..-NHS ester   
10225  t-boc-N-amido-dPEG..-amine   
10226  t-boc-N-EDA   
10229  Lissamine Rhodamine B sulfonamide-dPEG..-acid   
10230  Bis-dPEG..-acid   
10231  Bromoacetamido-N’-t-boc-amido-dPEG..-diamine   
10232  Bis-Maleimide amine,TFA salt   
10233  O-benzyl-dPEG..-acid   
10234  m-dPEG..-acid   
10236  Bis-dPEG..-acid   
10237  Bis-dPEG.., half benzyl half NHS ester   
10240  Amino-dPEG..-alcohol   
10243  Fmoc-N-amido-dPEG..-acid   
10244  Amino-dPEG..-acid   
10245  Bis-dPEG..-acid   
10246  Bis-dPEG..-NHS ester   
10247  Thiol-dPEG..-acid   
10249  Amino-dPEG..-alcohol   
10250  t-boc-N-amido-dPEG..-alcohol   
10251  m-dPEG..-alcohol 
10252  m-dPEG…-alcohol   
10254  m-dPEG..-tosylate   
10256  m-dPEG..-tosylate   
10259  m-dPEG..-tosylate   
10260  m-dPEG..-NHS ester   
10261  dPEG…-diol   
10262  m-dPEG…-NHS ester   
10264  Amino-dPEG..-t-butyl ester   
10265  MAL-dPEG..-acid   
10266  MAL-dPEG..-NHS ester   
10267  Biotin-dPEG..-benzophenone   
10268  CBZ-N-amido-dPEG..-acid   
10269  CBZ-N-amido-dPEG..-amine   
10271  Amino-dPEG..-t-butyl ester   
10273  Fmoc-N-amido-dPEG..-acid   
10274  MAL-dPEG..-NHS ester   
10275  MAL-dPEG..-acid   
10276  CBZ-N-amido-dPEG..-acid   
10277  Amino-dPEG..-acid   
10278  m-dPEG..-amine   
10281  Amino-dPEG…-t-butyl ester   
10283  Fmoc-N-amido-dPEG…-acid   
10284  MAL-dPEG…-NHS ester   
10285  MAL-dPEG…-acid   
10286  CBZ-N-amido-dPEG…-acid   
10287  Amino-dPEG…-acid   
10288  m-dPEG…-amine   
10289  m-dPEG…-MAL 
10291  Amino-dPEG…-t-butyl ester   
10292  t-boc-N-amido-dPEG…-acid   
10293  Fmoc-N-amido-dPEG…-acid   
10294  MAL-dPEG…-NHS ester   
10295  MAL-dPEG…-acid   
10296  CBZ-N-amido-dPEG…-acid   
10297  Amino-dPEG…-acid   
10298  m-dPEG…-amine   
10300  Trityl-S-dPEG..-acid   
10301  Methoxytrityl-S-dPEG..-acid   
10304  m-dPEG…-NHS ester   
10305  m-dPEG..-NHS carbonate   
10307  m-dPEG…-NHS carbonate   
10308  Biotin-dPEG..-TFPA   
10311  Amino-dPEG…-t-butyl ester   
10313  Fmoc-N-amido-dPEG…-acid   
10314  MAL-dPEG…-NHS ester 
10315  MAL-dPEG…-acid 
10316  CBZ-N-amido-dPEG…-acid   
10317  Amino-dPEG…-acid   
10318  m-dPEG…-amine   
10319  m-dPEG…-MAL   
10320  Bis-dPEG…-acid   
10322  m-dPEG…-NHS ester 
10323  MPS-Acid
10324  m-dPEG..-acid 
10325  Bis-dPEG..-biotin   
10326  m-dPEG..-acid 
10327  m-dPEG..-NHS ester 
10328  m-dPEG…-acid 
10330  Amino-dPEG..-methyl ester KIT   
10331  Amino-dPEG..-methyl ester KIT  
10332  Amino-dPEG..-methyl ester KIT   
10334  Amino-dPEG…-methyl ester KIT   
10335  Amino-dPEG…-methyl ester KIT   
10336  Amino-dPEG…-methyl ester KIT   
10337  Amino-dPEG…-methyl ester KIT   
10338  MAL-dPEG..-acid   
10339  m-dPEG…-acid   
10340  Azido-dPEG…-alcohol   
10342  Amino-dPEG…-ODMT   
10344  Biotin-dPEG….-azide   
10346  DNP-dPEG..-acid   
10347  DNP-dPEG..-NHS ester   
10348  m-dPEG..-alcohol
10355  Biotinoylsarcosine 
10356  Biotinoyl-2-Aminobutyric acid 
10358  Methoxytrityl-N-dPEG..-acid   
10360  NHS-dPEG..-Lys-(dPEG..-biotin).   
10361  Diamido-dPEG…-diamine   
10362  m-dPEG..-Propionaldehyde 
10363  m-dPEG..-Propionaldehyde   
10364  m-dPEG…-Propionaldehyde   
10365  MBS-dPEG..-acid   
10366  MBS-dPEG..-NHS ester   
10367  MBS-dPEG..-acid   
10368  MBS-dPEG..-NHS ester   
10369  MBS-dPEG…-acid 
10370  MBS-dPEG…-NHS ester   
10371  MBS-dPEG…-acid   
10372  MBS-dPEG…-NHS ester   
10373  SPDP-dPEG..-acid   
10374  SPDP-dPEG..-NHS ester   
10375  SPDP-dPEG..-acid   
10376  SPDP-dPEG..-NHS ester   
10377  SPDP-dPEG…-acid   
10378  SPDP-dPEG…-NHS ester 
10379  SPDP-dPEG…-NHS ester 
10380  SPDP-dPEG…-acid 
10393  Methoxytrityl-N-dPEG..-acid   
10394  Methoxytrityl-N-dPEG…-acid   
10395  Methoxytrityl-N-dPEG…-acid   
10396  Methoxytrityl-N-dPEG…-acid   
10397  Bis-MAL-dPEG…   
10398  DNP-dPEG…-acid   
10399  DNP-dPEG…-NHS ester   
10400  Amino-dPEG..-(m-dPEG…).   
10401  NHS-dPEG..-( m-dPEG…).-ester   
10402  Carboxyl-dPEG..-(m-dPEG…).   
10406  MAL-dPEG..-(m-dPEG…). 
10410  Amino-dPEG..-(m-dPEG..) .   
10411  NHS-dPEG..-( m-dPEG..).-ester   
10412  Carboxyl-dPEG..-(m-dPEG..).   
10416  MAL-dPEG..-(m-dPEG..).   
10420  Amino-dPEG..-(m-dPEG..).   
10421  NHS-dPEG..-( m-dPEG..).-ester   
10422  Carboxyl-dPEG..-(m-dPEG..).   
10424  m-dPEG…-Propionaldehyde   
10426  MAL-dPEG..-(m-dPEG..).   
10453  Amino-dPEG..-(m-dPEG…).   
10454  NHS-dPEG..-( m-dPEG…).-ester   
10455  Carboxyl-dPEG..-(m-dPEG…). 
10456  MAL-dPEG..-(m-dPEG…).   
10501  Azido-dPEG..-NHS ester  g 
10502  Azido-dPEG..-acid   
10503  Azido-dPEG..-NHS ester   
10505  Azido-dPEG…-NHS ester   
10510  Propargyl amine 
10511  Propargyl-dPEG..-NHS ester   
10512  Azido-dPEG..-acid
10513  Azido-dPEG…-acid 
10514  Azido-dPEG…-acid   
10522  Azido-dPEG..-amine   
10523  Azido-dPEG..-amine 
10524  Azido-dPEG…-amine   
10525  Azido-dPEG…-amine   
10526  Azido-dPEG…-amine   
10531  m-dPEG…-Azide (Azido-m-dPEG…)   
10532  m-dPEG..-Azide (Azido-m-dPEG..)   
10534  m-dPEG..-Azide (Azido-m-dPEG..)   
10536  m-dPEG…-Azide (Azido-m-dPEG…) 
10540  m-dPEG…-Azide (Azido-m-dPEG…) 
10541  Azido-dPEG..-alcohol   
10542  Azido-dPEG..-alcohol 
10543  Azido-dPEG…-alcohol   
10544  Azido-dPEG…-alcohol   
10602  Fmoc-N-amido-(dPEG..-biotin) acid   
10613  Fmoc-N-Lys-(dPEG..-biotin)-OH-(acid)   
10615  Fmoc-N-Lys-(dPEG…-biotin)-OH-(acid) 
10697  Bis-dPEG..-PFP ester   
10698  Bis-dPEG..-acid   
10699  Bis-dPEG..-NHS ester 
10717  Hydroxy-dPEG..-t-butyl ester   
10719  Hydroxy-dPEG…-t-butyl ester   
10720  Hydroxy-dPEG…-t-butyl ester   
10721  Hydroxy-dPEG…-t-butyl ester 
10722  Hydroxy-dPEG…-t-butyl ester 
10723  Bis-dPEG..-acid   
10724  Bis-dPEG..-NHS ester
10725  Bis-dPEG..-acid 
10726  Bis-dPEG..-NHS ester   
10728  m-dPEG…-alcohol   
10733  m-dPEG…-acid   
10745  m-dPEG..-MAL   
10746  m-dPEG..-MAL   
10751  Methoxytrityl-N-dPEG..-TFP ester   
10752  Methoxytrityl-N-dPEG..-TFP ester 
10753  Methoxytrityl-N-dPEG…-TFP ester   
10754  Methoxytrityl-N-dPEG…-TFP ester 
10755  Methoxytrityl-N-dPEG…-TFP ester   
10760  t-boc-N-amido-dPEG..-acid   
10761  t-boc-N-amido-dPEG…-acid   
10763  t-boc-N-amido-dPEG…-acid   
10773  dPEG…-biotin acid   
10774  NHS-dPEG…-biotin   
10776  dPEG…-biotin acid 
10780  Biotin-dPEG…-azide   
10784  Biotin-dPEG…-azide   
10785  Biotin-dPEG…-MAL   
10786  Biotin-dPEG…-NH.   
10787  Biotin-dPEG…-azide   
10792  m-dPEG..-thiol   
10793  m-dPEG..-thiol   
10794  m-dPEG…-thiol   
10799  m-dPEG..-Lipoic acid   
10800  m-dPEG..-Lipoic acid 
10801  m-dPEG…-Lipoic acid   
10804  m-dPEG…-Lipoic acid 
10806  Lipoimide-dPEG..-acid   
10807  Lipoimide-dPEG..-acid   
10808  Lipoimide-dPEG…-acid 
10809  Lipoimide-dPEG…-acid 
10811  Lipoimide-dPEG…-acid   
10817  MAL-dPEG..-Lipoic acid   
10819  MAL-dPEG…-Lipoic acid   
10820  Biotin-dPEG..-Lipoic acid 
10822  Biotin-dPEG…-Lipoic acid   
10825  Biotin-dPEG..-azide   
10826  Biotin-dPEG..-NH. 
10843  Methoxytrityl-N-dPEG…-TFP ester   
10845  Methoxytrityl-N-dPEG…-TFP ester   
10846  Methoxytrityl-S-dPEG…-acid
10847  Methoxytrityl-S-dPEG…-acid 
10848  Methoxytrityl-N-dPEG…-acid 
10850  Thiol-dPEG…-acid 
10851  dPEG…-SATA acid (S-acetyl-dPEG…-acid) 
10852  dPEG…-SATA (S-acetyl-dPEG…-NHS ester) 
10853  Thiol-dPEG…-acid   
10854  dPEG…-SATA acid (S-acetyl-dPEG…-acid) 
10855  dPEG…-SATA (S-acetyl-dPEG…-NHS ester) 
10856  SPDP-dPEG…-acid 
10857  SPDP-dPEG…-NHS ester 
10858  Thiol-dPEG…-acid 
10859  dPEG…-SATA acid (S-acetyl-dPEG…-acid) 
10860  dPEG…-SATA (S-acetyl-dPEG…-NHS ester) 
10861  SPDP-dPEG…-acid 
10862  SPDP-dPEG…-NHS ester 
10866  SPDP-dPEG…-acid 
10867  SPDP-dPEG…-NHS ester 
10868  Amino-dPEG…-alcohol 
10869  Amino-dPEG…-alcohol 
10894  m-dPEG…-alcohol 
10895  m-dPEG…-alcohol 
10898  m-dPEG…-NHS carbonate 
10899  m-dPEG…-NHS carbonate 
10901  Amino-dPEG…-t-butyl ester 
10902  t-boc-N-amido-dPEG…-acid 
10903  Fmoc-N-amido-dPEG…-acid 
10906  CBZ-N-amido-dPEG…-acid 
10907  Amino-dPEG…-acid 
10908  m-dPEG…-amine 
10909  m-dPEG…-acid
10910  m-dPEG…-NHS ester 
10918  m-dPEG…-amine 
10920  m-dPEG…-NHS ester 
10921  Amino-dPEG…-t-butyl ester   
10922  t-boc-N-amido-dPEG…-acid 
10923  Fmoc-N-amido-dPEG…-acid
10924  MAL-dPEG…-NHS ester 
10925  MAL-dPEG…-acid
10926  CBZ-N-amido-dPEG…-acid 
10927  Amino-dPEG…-acid 
10928  m-dPEG…-acid 
10929  m-dPEG..-NHS carbonate 
10930  m-dPEG…-NHS carbonate 
10931  m-dPEG…-MAL 
10932  m-dPEG…-MAL 
10939  S-acetyl-dPEG…-alcohol 
10940  S-acetyl-dPEG…-alcohol 
10941  S-acetyl-dPEG…-alcohol 
10942  m-dPEG…-alcohol
10953  Bis-dPEG…-acid
10954  Bis-dPEG…-NHS ester   
10955  Bis-dPEG…-acid   
10956  Bis-dPEG…-NHS ester 
10957  Amino-dPEG..-t-boc-hydrazide 
10958  Amino-dPEG…-t-boc-hydrazide 
10961  MAL-dPEG..-t-boc-hydrazide 
10962  MAL-dPEG…-t-boc-hydrazide 
10967  Bis-dPEG…-acid   
10968  Bis-dPEG…-NHS ester 
10978  Bis-dPEG…-acid 
10979  Bis-dPEG…-NHS ester 
10980  Bis-dPEG…-PFP ester 
10981  Bis-dPEG..-PFP ester 
10982  Bis-dPEG..-PFP ester 
10983  Bis-dPEG..-PFP ester 
10984  Bis-dPEG…-PFP ester 
10985  Bis-dPEG…-PFP ester 
10986  Bis-dPEG…-PFP ester 
10987  Bis-dPEG..-PFP ester 
10988  Bis-dPEG..-NHS ester 
10994  Fmoc-N-amido-dPEG..-NHS ester   
10995  Fmoc-N-amido-dPEG..-NHS ester 
10996  Fmoc-N-amido-dPEG…-NHS ester