MEDIMABS泛素化H2B小鼠单克隆抗体说明书


MEDIMABS成立于2006年,位于魁北克省蒙特利尔的一群麦吉尔大学研究人员,确保当地研究人员能够负担得起地获得新的高质量研究抗体。我们的目标是提供定制的抗体生成服务,并提供比大多数研究实验室更好,更快,更便宜。

MEDIMABS泛素化H2B小鼠单克隆抗体说明书

MEDIMABS MM-0029-P

UBIQUITINATED H2B MOUSE MONOCLONAL ANTIBODY (NRO3)

泛素化H2B小鼠单克隆抗体(NRO3)

MM-0029-P

克隆:

单克隆

主持人:老鼠

反应性:人,小鼠,果蝇,拟南芥

应用: WB,IHC,IF,ChIP

 

 

概述

目标:

泛素化H2B

目标背景:

已经证明组蛋白修饰涉及转录的调节。近的研究揭示了H2B泛素化与转录控制之间的复杂联系。一些研究表明H2B泛素化在转录沉默中发挥作用,而其他研究表明在转录起始和延伸中起作用。针对对应于人组蛋白H2B上遍在蛋白的缀合位点的分支肽产生该抗体。

目标别名:

泛素化组蛋白H2B,泛素组蛋白​​H2B,H2B,ub组蛋白h2b,ub h2b

免疫原:

对应于人组蛋白H2B上遍在蛋白的缀合位点的支链肽

特异性:抗体识别人组蛋白H2B的K120遍在蛋白化,与非泛素化的H2B或泛素化的组蛋白H2A没有可检测的交叉反应性。

克隆ID:

NRO3

同种型:

IgG2a

防腐剂:

没有

格式:

在PBS pH7.4中纯化的冻干蛋白G.

建议开始稀释:

如果用50μL的去离子水重建:WB2-3μg/ ml; 每个样品ChIP3-5μg; IHC:1:200 – 1:500。宜稀释必须由用户确定。

限制:

仅供研究使用

参考文献:

1.-Chen S-组蛋白H2B单泛素化是一种关键的表观遗传开关,用于调节自噬。

2.-Dickson KA – RING指结构域E3泛素连接BRCA1和RNF20 / RNF40复合物全局丧失染色质标记组蛋白H2B单泛素化(…

3.-Lee S-组蛋白赖氨酸甲基转移酶对植物免疫的调节。

4.-Wu Y-微阵列分析揭示了组蛋白H2B单泛素化的潜在生物学功能。

5.-Wijeweera A-促性腺激素基因转录由menin介导的染色质作用激活。

6.-Rao SG – Invadolysin通过SAGA复合物在遗传上起作用,调节染色体结构。

7.-Ooga M-组蛋白H2B单泛素化参与小鼠植入前发育的调节。

8.- Bonizec M – 泛素选择性与Cdc48 / p97与Ubx3结合,调节组蛋白H2B的单泛素化。

9.-Zou B-组蛋白2B在疾病抗性基因位点的单泛素化调节其表达并影响拟南芥中的免疫应答。

10.-MénardR – 组蛋白H2B单泛素化涉及拟南芥中角质和蜡组成的调节。

11.-长L – U4 / U6再循环因子SART3具有组蛋白伴侣活性并与USP15结合以调节H2B去泛素化。

12.-Wu B – Ring Finger Protein 14是TCF /β-连环蛋白介导的转录和结肠癌细胞存活的新调节因子。

13.-Armor SM-高可信度相互作用图将SIRT1鉴定为USP22和SAGA共激活因子复合物乙酰化的介质。

14.-Nardini M – 序列特异性转录因子NF-Y显示组蛋白样DNA结合和H2B样泛素化。

15.-Sin HS-RNF8调节活跃的表观遗传修饰并逃避减数分裂后精子细胞中无活性性染色体的基因激活。

16.-Santoro SW和Dulac C-活性依赖性组蛋白变体H2BE调节嗅觉神经元的寿命。

17.-Himanen K-组蛋白H2B单泛素化需要达到拟南芥中生物钟基因的转录水平。

18.-Mattiroli F-RNF168在H2A / H2AX上泛素化K13-15以驱动DNA损伤信号传导。

19.Bourbousse C – 组蛋白H2B单泛素化有助于在拟南芥光形态发生过程中快速调节基因表达。

20.-Urasaki Y-葡萄糖剥夺与肿瘤中组蛋白H2B单泛素化受损的偶联。

21.-Lee JS-在Chd1上H2B单泛素化和核小体重组的相互依赖性。

22.-JääskeläinenT – 组蛋白H2B泛素连接RNF20和RNF40雄激素信号传导和前列腺癌细胞生长。

23.-Hahn MA-肿瘤抑制因子CDC73与无名指蛋白RNF20和RNF40相互作用,是维持组蛋白2B单核苷酸所必需的…

24.-Chipumuro E和Henriksen MA-泛素水解酶USP22有助于JAK-STAT诱导基因的3'末端加工。

25.-Rytinki MM – SUMO的过度表达扰乱了秀丽隐杆线虫的生长和发育。

26.-Lang G-人SAGA复合物的严格控制的去泛素化活性差异性地修饰了不同的基因调控元件。

27.- Vernimmen D – Polycomb驱逐作为一种新的远程增强功能。

28.-Ma MK-染色质边界完整性需要由H2B泛素化指导的组蛋白串扰。

29.-Taniue K- ETS家族成员EHF和ATPase RUVBL1抑制p53介导的细胞凋亡。

30.-Shema E-哺乳动物细胞中泛素化H2B的检测和表征。

31.-Krichevsky A-参与KDM1C组蛋白去甲基化酶-OTLD1 otubain-like组蛋白去泛素酶复合物在植物基因抑制中的作用。

32.-Kim J和Roeder RG-与纯化因子的核小体H2B泛素化。

33.-Roudier F-整合表观基因组图谱定义了拟南芥中的四种主要染色质状态。

34.-Gatta R-在H2B的赖氨酸120上的乙酰化 – 单泛素化开关。

35.-Draker R-USP10去泛素化组蛋白变体H2A.Z,两者都是雄激素受体介导的基因激活所必需的。

36.-Gao Z-白藜芦醇诱导细胞衰老,在神经胶质瘤细胞中减少组蛋白H2B的单泛素化。

37.-Veiseth SV – SUVR4组蛋白赖氨酸甲基转移酶结合遍在蛋白并在拟南芥中转座子染色质上将H3K9me1转化为H3K9me3。

38.-Gao Z和Xu CW-葡萄糖代谢诱导组蛋白H2B在哺乳动物细胞中的单遍在蛋白化。

39.-Buro LJ – Menin和RNF20募集与调节信号转导和转录激活因子的动态组蛋白修饰相关1(STAT …

40.-Gatta R和Mantovani R – 单核小体ChIPs识别细胞周期启动子上的乙酰基标记的广泛转换。

41.-Le May N – NER因子被募集到活跃的启动子中,并且在没有外源性基因毒性攻击的情况下促进转录的染色质修饰。

42.-Lilley CE-病毒E3连接酶靶向RNF8和RNF168以控制组蛋白泛素化和DNA损伤反应。

43.-Lu LY – RNF8依赖性组蛋白修饰调节精子发生过程中的核小体去除。

44.-Mohan M-通过一种新的含Dot1复合物(DotCom)将H3K79*基化与Wnt信号传导联系起来。

45.-Stewart GS – RIDDLE综合征蛋白在DNA损伤位点介导泛素依赖性信号级联反应。

46.-Schmitz RJ-组蛋白H2B去泛素化是FLOWERING LOCUS C转录激活和拟南芥开花适当控制所必需的。

47.-Sarkari F – EBNA1介导的组蛋白H2B去泛素化复合物的募集与Epstein-Barr病毒潜在的DNA复制起源。

48.-Koues OI – 19S蛋白酶体正向调节细胞因子诱导基因的组蛋白甲基化。

49.-Buszczak M – 果蝇干细胞对组蛋白H2B泛素蛋白酶骨瘦如何共同需求。

50.-Cao Y-组蛋白H2B单泛素化在FLOWERING LOCUS C的染色质中调节拟南芥的开花时间。

51.-Minsky N – 单泛素化H2B与人类细胞中高表达基因的转录区域相关。

52.-Shema E-组蛋白H2B特异性泛素连接酶RNF20 / hBRE1通过选择性调节基因表达作为推定的肿瘤抑制因子。

53.-US20130295584A1-组蛋白泛素化作为癌症生物标志物

存储:

冻干抗体可在4ºC下保存长达3个月,并应保存在-20ºC长期保存(2年)。为避免冻融循环,重组抗体应在冷冻前等分,长期(1年)储存(-80ºC)或保持在4ºC短期使用(2个月)。为了大限度地回收产品,请在取下盖子之前离心原始样品瓶。用测定缓冲液可以进一步稀释。在长期储存期(2年冻干或1年重建)后,应在您的分析中使用标准样品测试抗体,以验证您是否注意到其功效有任何降低。

Ubiquigent泛素化和蛋白质降解药物发现方面的专业合作伙伴

 

Ubiquigent通过调节和利用泛素系统来支持并支持针对蛋白质降解的药物发现。

我们的化学和生物学平台使我们能够设计和开发新型化合物,作为战略合作伙伴关系的一部分。同时,我们还提供对我们平台和功能的访问,以评估合作伙伴的化合物。

Ubiquigent –您在泛素化和蛋白质降解药物发现方面的专业合作伙伴

在Ubiquigent,我们运用了遍在蛋白系统的专业知识来开发一套全面的检测方法,以支持您的药物发现计划。因此,无论您是对识别或表征去泛素化酶(DUB)酶抑制剂或泛素连接酶的调节剂感兴趣,还是希望利用泛素蛋白酶体系统(UPS)来触发蛋白质的降解-包括跨越先前的“不可负担的”靶标, –通过PROTAC或分子胶类型方法,我们拥有知识,化验方法和能力来支持和推进您的药物发现计划的每个步骤。

泛素化在各种细胞过程中的中心作用使负责泛素化和去泛素化的酶成为解决一系列人类疾病的具吸引力的药物靶标。自从诺贝尔奖因发现“泛素介导的蛋白质降解”和获得蛋白酶体抑制剂的临床批准而获得诺贝尔奖以来,已有十多年的历史,人们越来越有兴趣利用泛素化机制的其他成分作为治疗靶标,例如DUB。

选择性DUB抑制剂的开发受到以下方面的限制:对DUB生物学的了解不足,难以建立适用于化合物筛选的可靠的生化分析方法,用于评估DUB活性或抑制作用的细胞和体内模型的局限性以及各种小分子的多效性DUB抑制剂(Harrigan et al。,2017)。在过去的十年中,泛用型科学家专注于构建一套生化和细胞分析方法,以鉴定和表征筛选结果,消除假阳性,确认细胞靶标参与以及探索分子的作用机理,以期为客户提供支持药物发现计划。

通过我们的学术合作伙伴网络,在药物发现方面的集体经验以及在遍在蛋白系统测定和药物化学方面的广泛深入的经验,我们的科学家可以补充您针对疾病的专业知识,以帮助您确定真正的候选药物。

向下滚动以探索我们的药物发现筛选平台如何应用于:

  • 目标识别和确认
  • DUB抑制剂的鉴定和表征
  • 目标参与和细胞选择性分析
  • 行动机制研究
  • PROTAC和分子胶
  • E3连接酶

目标识别和确认

我们的PROTEOME profiler ™DUB profiler -Cell™多重串联质谱支持平台​​是功能强大的补充方法,可支持目标识别和验证目标。

可以通过PROTEOME profiler ™揭示疾病状态或其他实验刺激(例如细胞因子添加或应激条件)引起的蛋白质表达和体内稳态的变化 服务。由于检查了细胞或组织的整个蛋白质组,因此这是一种*无偏的方法,可用于识别上调或下调的目标靶标,包括但不限于泛素途径。该工作流程非常灵活,可为您选择的细胞系提供检查,此外,多路程序可直接比较多个条件。利用等基因系进行的后续实验(其中候选DUB(或连接酶)被基因删除)可以进一步证实这些靶标与疾病的相关性(以及相关的途径调节),从而提供可靠的靶标验证。

DUB 探查 -细胞™  平台,专注于细胞或组织中的活动的DUB。使用该测定法,我们可以研究与治疗相关的细胞和组织中单个候选DUBs或整个活性“ DUBome”的活性,或者比较携带遗传定义突变或经各种刺激治疗的同基因细胞对之间的活性DUBome。与PROTEOME profiler ™平台一样,DUB profiler -Cell™  工作流程具有高度的灵活性,可以检查您选择的细胞系。

DUB抑制剂的鉴定和表征

Ubiquigent的DUB profiler ™服务已确立为*的平台,可用于鉴定和表征新型DUB抑制剂,并且已被领导小组采用以支持其药物发现计划。使用DUB profiler ™ 体外平台可从您的资料库中快速揭示化学起点,或利用该服务来支持化合物优化的Q-SAR药用化学循环,从而在我们广泛的DUB面板中建立效价和选择性。

我们服务的*卖点之一就是灵活性。我们的大多数客户希望使用我们经过验证的标准标准DUB profiler ™,但如果您需要根据自己的需要量身定制检测方法,例如调整预孵育参数或筛选任意数量的检测试剂,我们很乐意与您合作来自我们广泛研究小组的DUB,其化合物浓度不限。我们还能够使用相同的分析形式快速确定由初筛产生的任何目标化合物的IC 50值。

我们很高兴通过以下任何一种方法对您的化合物进行进一步分析:

  • 在正交试验中确认命中(例如DUB profiler -MALDI™
  • 确定化合物的可逆性,竞争性/非竞争性(包括但不限于使用DUB 加合物 ™分析)
  • 消除假阳性氧化还原循环化合物(REDOX profiler ™

目标参与和细胞选择性分析

DUB 探查 -细胞™测定允许您快速确认测试中相关的细胞环境化合物-DUB目标接合,并提供相对于蜂窝EC 50相对于每DUB接合由复合值。因此,它是非常有互补DUB 探查 ™它是对疾病的上下文高度相关的附加功能,因为你可以询问您选择的细胞系(例如,一个在其中看到一个相关的表型/功能/治疗/ PD该化合物的效果)。

行动机制研究

我们的PROTEOME profiler ™服务中的候选化合物对疾病相关细胞的治疗提供了有关候选化合物作用机理的宝贵信息。分析是*无偏见且在蛋白质组范围内的。时程和剂量反应研究可以与无效的类似物或工具化合物一起有效地纳入研究。使用PROTEOME profiler ™  确认细胞中的主要靶标,揭示完整的途径和蛋白质组学改变,并识别潜在的生物标志物,以协助和加速临床发展。

PROTAC和分子胶

靶向蛋白水解的嵌合体(PROTAC)或分子胶的使用是一种新的方式,可以“劫持”泛素-蛋白酶体系统,从而引发与疾病有关的特定靶蛋白的降解,否则这些蛋白可能是化学上难以治疗的。PROTAC的关键特征之一是它们的选择性。但是,例如PROTAC MZ1已经证明,关于选择性的预测并不总是在细胞中得到证实。因此,任何有针对性的蛋白质降解药物发现计划的基本要素(使用PROTAC,分子胶或类似方法)都是能够通过了解向下和潜在的向上调节来证明与疾病相关的细胞环境中的选择性。细胞蛋白质组个体成员的数量。

PROTEOME profiler ™  是一项新服务,可报告响应任何细胞输入而产生的相对蛋白质组丰度变化,并在测试条件范围内提供相对定量。该平台可用于确定单个 PROTAC /分子胶的选择性(例如,作为MOA研究的一部分或对许可机会进行尽职调查),或为未来的开发确定不同的PROTAC /分子胶设计的优先级。

即将发布我们的PROTAC profiler ™ 体外 Q-SAR分析平台。

E3连接酶

几位客户已与Ubiquigent接触,以利用我们对泛素途径的知识和化验开发专业知识来开发新型的泛素系统靶标化验,以支持其药物发现计划。一如既往,我们可以灵活地满足客户的要求;可以在Ubiquigent上针对客户化合物库筛选经过验证的测定,或转移至客户实验室。作为一个例子,已经将IDOL鉴定为阿尔茨海默氏病以及脂质稳态中LDL受体(LDLR)的调节和更新的重要目标。我们已经开发了HTS兼容的IDOL  分析方法,用于筛选化合物库。

泛素系统

泛素级联反应在细胞信号传导中的关键作用,以及对这种途径中靶标治疗潜力的日益验证,正在引起学术界和行业研究人员对该领域的兴趣。Ubiquigent正在通过先进的药物发现筛选平台,  研究工具和  化学帮助这一道路,   这使研究人员能够加深对泛素的基本和潜在生物化学的了解,并加快该领域的药物发现。

 

泛素化与磷酸化一样,描述了可逆的翻译后蛋白质修饰。泛素化或“泛素化”可控制蛋白质底物的命运(就其周转率而言)或其信号传导功能。这是一个过程,涉及一个称为泛素的76个氨基酸小蛋白与底物蛋白(也可能是另一个泛素分子)中赖氨酸残基的ε-氨基共价结合的过程。这导致底物的单泛素化或多泛素化。后者是泛素链附着于底物蛋白的位置。链的结构决定了蛋白质是否以蛋白酶体或溶酶体依赖性方式调节特定的信号级联或降解。

泛素化途径的酶在许多细胞过程中起关键作用,这些过程包括但不限于底物蛋白的靶向蛋白酶体依赖性降解。底物泛素化过程涉及三类酶。 活化酶(E1s),  结合酶(E2s)  和  连接酶(E3s)。底物蛋白的泛素化取决于这三种酶的顺序作用。在依赖于ATP的一步中,E1酶与泛素形成硫酯键,然后在E2酶上转移至活性位点半胱氨酸的巯基,形成泛素-硫酯中间体。然后,E3充当衔接子,以结合底物蛋白和被泛素“加载”的E2。E3促进泛素和底物蛋白之间的异肽键形成。

尽管仍然涉及翻译后修饰,尽管涉及功能蛋白而非功能基团,但泛素化比磷酸化复杂得多。这主要是由于泛素形成各种不同连接类型和复杂性的聚泛素链的能力,而且还因为存在与泛素类似的 进一步相关 (Ubl)蛋白(包括SUMO,NEDD8,ISG15和FAT10),尽管遵循类似的特定酶级联反应,但对于Ubl修饰的目标底物可能会产生不同的结果。在进一步的系统复杂性水平上,E3连接酶或底物的修饰可能会改变其修饰底物或修饰自身的能力。例如在E3连接酶的情况下通过NEDDylation(NEDD8是另一个Ubl),或者在E3连接酶和底物的情况下通过磷酸化。

 

PROTAC和分子胶

泛素蛋白酶体系统(UPS)是细胞控制受控蛋白质更新的主要途径,它由一系列将泛素链缀合至目标蛋白质的酶(E1活化酶,E2缀合酶和E3连接酶)组成。多泛素化-以及一系列使泛素链解偶联的酶(去泛素化酶; DUB)- 详情请参见此处 。通过UPS与蛋白质偶联的某些类型的泛素链可以指导该蛋白质被细胞蛋白酶体复合物降解。

蛋白水解靶向嵌合体(PROTAC)和分子胶为小分子靶向降解目标蛋白质(POI)提供了一种方法。一种被描述为可以解决“非药物”蛋白质组的方法。PROTAC和相关的分子胶粘分子劫持UPS,以实现POI的“按需”降解。

PROTAC是一种异双功能分子,由与待降解的POI结合的配体和与E3连接酶或E3连接酶底物结合适配器结合的配体组成。这两个元件通过连接分子连接。POI与E3连接酶复合物结合形成三元复合物后,如果POI相对于E3连接酶复合物适当定位,则POI可以被多泛素化。然后,POI被蛋白酶体复合物降解。由于PROTAC可以循环使用以重复此过程,因此PROTAC具有催化作用机制(MOA),因此是“事件驱动”的。

分子胶是与PROTAC相关的分子,对E3连接酶或POI的结合亲和力低,但增强了这种蛋白质间相互作用,使POI与E3连接酶结合并随后发生多泛素化和POI降解。像PROTAC一样,分子胶显示出事件驱动的催化MOA。

 

人类DUB超级家族

下面介绍的是一组系统进化树,它们代表通过比较酶的去泛素化催化结构域的序列同源性而构建的去结合酶(DCE)家族。根据域(CDD,HHpred,Pfam和SMART)和结构(PDB)数据库的预测,表明了进一步的酶结构。经英国利物浦大学转化医学研究所和整合生物学研究所的Michael Clague教授和SylvieUrbé教授许可,展示了这棵树和传说。

 

 

 

 

治疗区域和泛素系统

随着细胞信号通路和网络的揭示,调节细胞功能的蛋白质修饰的多样性和复杂性不断增长。泛素级联在细胞信号传导和蛋白质稳态中发挥的关键作用,以及在该途径中对靶标治疗潜力的越来越高的验证,正在促使人们对以泛素系统为靶标的药物发现产生兴趣。

在本节中,我们试图根据它们与关键治疗领域的相关性,开始将泛素系统蛋白组装成四类。这并非是详尽无遗的清单,而是重点介绍了各种治疗领域中的一些新工作,并且增加了各种泛素系统蛋白的概念的重要性,这些蛋白是潜在的药物化学和药物治疗新靶标。

肿瘤科

心血管,炎症和代谢

神经和肌肉骨骼

胃肠,肝和肾

心血管,炎症和代谢

心脏动态平衡需要有效的蛋白质更新,因此蛋白酶体功能受损越来越多地与心脏病有关。已经确定了特定的泛素蛋白酶体和溶酶体降解以及心血管生物学,炎性疾病和代谢性疾病的潜在非降解机制,此外,许多此类细胞途径已被提议为临床相关靶标。例如在循环低密度脂蛋白的调节中。

下面我们列出了一些目标和疾病的关联,重点介绍了各种治疗领域的新工作。遍在蛋白系统中还有其他目标可能会被添加到此列表中,以及已经引用的目标物的进一步治疗应用–为什么不让我们知道您已经看到或正在研究的关键遍在蛋白系统治疗学协会,并帮助我们建立这一目标资源。在这里提交您的建议。

点击这里查看参考清单

在心血管组织 71中表达的靶标

 

造血系统
的DUB:A20,  AMSH-LP,CYLD,EIF3H,OTUD5,PRPF8,USP3,USP4,USP7,USP8,USP9Y,USP15,USP20,USP25,USP28,USP33,USP34,USP36,USP39,USPL1 
E3连接酶:CBL,三重奏

心脏
的DUB:OTUB1,OTUD6A,USP13
E3连接酶:  CUL5 / Rnf7,DCNL1,  IDOL,痒,MURF1

造血系统中泛素相关的靶点  71

↓–下调,↑–过度表达,[] –变异

 

免疫调节
DUB:A20  54,塞尚  64,OTUD5  52,OTULIN  55,USP4  31,USP20  41
E3里加斯:IPAH9.8  69,ITCH  6
泛素结合蛋白:[ NEMO ] 79

类风湿关节炎
E3连接酶:Cul1 / Rbx1  14

脂质稳态
的DUB:USP8  59
E3连接酶:IDOL  1,2,59

心肌病
DUB:USP3,BRCC3 
E3连接酶:MURF1  25

白血病
DUB:[ A20 ]  55,BAP1  61,[BRCC3],↓ USP1,↑USP11,↑USP13,↑USP46 
E3里加斯:TRIAD  23,[ CBL ] 75,76,  Cul5 / Rnf7  10

造血系统癌症
DUB:[ USP9x ]

肾小球肾炎
DUB:↑  OTUB1  51

骨髓瘤
DUB:USP7 33
E3连接酶:[ CBL ] 74
蛋白酶体(蛋白酶催化位点)77,78

↓–下调,↑过表达,[] –变异

 

胃肠,肝和肾

在肠道,肝脏和肾脏中发现的各种细胞类型中,很明显普遍需要适当控制蛋白质稳态。这些组织中发生的病理学不仅与泛素级联反应而且与一般细胞信号转导方面都越来越紧密地联系在一起。

这并不是要详尽列出目标和疾病的关联,而是要重点介绍各种治疗领域的新工作。遍在蛋白系统中还有其他目标可能会被添加到此列表中,以及已经引用的目标物的进一步治疗应用–为什么不让我们知道您已经看到或正在研究的关键遍在蛋白系统治疗学协会,并帮助我们建立这一目标资源。在这里提交您的建议。

点击这里查看参考清单

组织类型71表达的泛素系统靶标 

 

消化系统
DUB:  AMSH-LP,BRCC3,MPND,USP12,YOD1

肝脏和胆道系统
DUB:塞尚,MPND,OTUB2,USP18,USP26,USP29,USP30,USP31,USP35,USP40,USP43 
E3里加斯:  Cul1 / Rbx1,Cul1 / Skp1 / Rbx1,IDOL,ITCH,RNF8

肾脏系统
DUBs:OTUD3,USP2,USP21,USP45 
E3里加斯:Cul1 / Rbx1,  Cul1 / Skp1 / Rbx1,DCNL1,ITCH

泛素系统靶向胃肠道,肝脏和肾脏疾病  71

↓–下调,↑–过度表达,[] –变异

 

食道癌
DUB:↑ USP17, ↓ USP46

胃癌
DUBs:↓ AMSH,↑ USP1
E3连接酶:  Cul1 / Skp1 / Rbx1  68

大肠癌
DUB:[ A20 ],[ Ataxin-3L ],[塞尚],[塞尚2],[USP17],[MYSM1],[ OTUD3 ],[OTUD4],[ USP2 ],[USP3],[ USP4 ] ,[ USP5 ],[ USP6 ],[ USP7 ],[ USP8 ],[ USP9x ],[USP9Y],[USP11],[USP13],[USP16],[USP19],[ USP21 ],[ USP25 ],[ [USP26],[ USP28 ],[USP29],[USP31],[USP32],[USP33],[ USP34 ],[USP36],[USP42],[USP44],[USP45],[USP47],[USP48] ,↓USP49,[USP51],[USP54],[USPL1],[VCPIP1]

大肠癌
DUBs:↑ AMSH-LP,↓塞尚,↑EIF3H,↓MPND,↓ JOSD1,↓ OTUD1,↑ OTUD6B,↑OTUB2,↓ UCHL1,↑ UCHL1  47,↑ UCHL3,↓ USP2,USP9x  35,↑ USP14  37,↑USP17,↑USP22,↓USP53,↑USPL1 
E3连接酶:  RNF8  70

肝癌
DUB:[PRPF8],↑USP14  36,[ USP25 ],[USP38],[USP40] 
E3连接酶:SMURF1  20

尿路癌
DUBs:[ USP2 ],[ USP4 ],[ USP5 ],[USP26],[USP48],[VCPIP1]

肾癌
DUBs:↑ AMSH-LP,[BAP1]  60,↓ UCHL1,↓ USP2,↓ USP5,↑ USP14,↑USP34,↓USP46 
E3里加斯:  Cul3 / Rbx1  13,Cul5 / Rnf7  11

膀胱癌
DUB:↑ OTUB1,↑ USP4,USP2  29
E3连接酶:Cul3 / Rbx1  12

肾小球肾炎
DUB:↑ OTUB1  51

糖尿病
DUB:OTUB2  50

↓–下调,↑过表达,[] –变异

 

神经和肌肉骨骼

缺乏或失去对泛素和自噬信号传导级联的充分控制的原因已归因于神经退行性疾病并与之相关。神经元在很大程度上依赖于这些系统的正常运行才能正常运行,从而使脆弱的神经元的功能紊乱可能导致蛋白质聚集,内质网应激增加和细胞死亡。肌肉更新的调节也与泛素系统的控制有关。

这并不是要详尽列出目标和疾病的关联,而是要重点介绍各种治疗领域新工作。遍在蛋白系统中还有其他目标可能会被添加到此列表中,以及已经引用的目标物的进一步治疗应用–为什么不让我们知道您已经看到或正在研究的关键遍在蛋白系统治疗学协会,并帮助我们建立这一目标资源。在这里提交您的建议。

点击这里查看参考清单

在CNS,PNS和肌肉组织中表达的泛素系统靶标  71

 


的DUB:共济失调-3L,Cezanne2,MYSM1,OTUB1,TRABID,UCHL1,USP3,USP6,USP9X,USP11,USP14,USP21,USP22,USP26,USP29,USP32,USP33,USP42,USP46,USP51,USP54 
E3连接酶:  CUL1 / Rbx1,  Cul1 / Rbx1 / Skp1,Cul3 / Rbx1,Cul5 / Rnf7,DCNL1,CHIP,  IDOL,ITCH,RNF8,RNF11,ZNRF2  8

脊髓
DUB:AMSH

骨骼肌
DUB:CSN5,EIF3F,OTUB2,OTUD1,USP2,USP13,USP19,USP38,USP39,USP49,USP54 
E3里加斯:  IDOL,  ITCH,CHIP,  Cul5 / Rnf7,MURF1

泛素系统靶向神经和肌肉疾病  71

↓–下调,↑–过度表达,[] –变异

 

抑郁抑郁症
:USP46

帕金森氏病
DUBs:UCHL1,USP25,USP40,Ataxin-3  53
E2共轭酶:Ube2A 81
E3天gas座:RNF11  21,  Parkin  27

阿尔茨海默氏病
DUBs:USP14  38
E1激活酶:APP-BP1 / UBA3  73
E3里加斯:Cul1 / Rbx1  15,  CHIP  3,5,Parkin  26

神经退行性疾病
DUBs:Ataxin-3,  UCHL1  46
E2共轭酶:Ube2A 81,Ube2H 83,Ube2K 85
E3天gas座:RNF11 22,DCNL1  24,CHIP  4

与脑相关的癌症
DUB:↓Cezanne2,↓ UCHL1,↑ USP1,↑USP3,[ USP5 ]  32,↓USP11,[ USP15 ]  39
E3 Ligases:CHIP  7

肌肉骨骼疾病和萎缩
E1激活酶:[ Ube1 ] 72
E2结合酶:  Ube2H 83
E3里加斯:↑  MuRF1 90
DUBs:  Ataxin-3,  Ataxin-3L,USP14  40,USP19  40
UBP:[ Optineurin ] 80

肿瘤科

不受控制的细胞分裂是肿瘤的标志,细胞分裂失调,细胞凋亡和对生长因子的反应突显了这一点。肿瘤的微环境可能显示出细胞代谢改变和蛋白酶体活性增加。细胞失调的许多方面以及在肿瘤学中进行治疗性干预的机会都涉及泛素级联反应的各个方面,例如癌基因的调控和肿瘤抑制因子的转换。

这并不是要详尽列出目标和疾病的关联,而是要重点介绍各种治疗领域的新工作。遍在蛋白系统中还有其他目标可能会被添加到此列表中,以及已经引用的目标物的进一步治疗应用–为什么不让我们知道您已经看到或正在研究的关键遍在蛋白系统治疗学协会,并帮助我们建立这一目标资源。在这里提交您的建议。

单击此处以获取参考列表。

遍在蛋白系统与肿瘤相关的靶标  71

↓–下调,↑–过度表达,[] –变异

 

乳腺癌
DUBs:↑塞尚  65,[CSN6],[EIF3H],↑ OTUB2,↓ USP2,↑ USP14,USP11  62,63,[ USP15 ],↓USP16,↓USP22,↑USP22,↓USP24,
↑ USP28  43, ↑USP32,USP35  64,↓USP44,↓USP46,↓USP47,↓USP53 
E2共轭酶:Ube2Q1 86,Ube2Q2 87
E3里加斯:WWP1  17,SMURF1  18,SMURF2  18

宫颈癌
DUBs:↑USP17,UCHL3  48
E2结合酶:Ube2S 88
E3连接酶:↑ BIRC2  9

卵巢癌
DUB:↑ USP2,↑ USP14,↓ USP15,[ USP15 ],[USP34],↑ USP36  44,OTU1  49

肺(NSCLC)
DUB:↑CSN5,↑ JOSD1,↓ OTUD1,↓ USP1  28,↑ USP4,  USP8  58,↑ USP9x,↑USP17,↓ USP25  42,↓USP53,↑ UCHL1
E2结合酶:Ube2C 82,Ube2C 82,Ube2T 89
E3 Ligases:RNF8  16

肺(SCLC)
DUB:↑ USP4,↓  USP4

淋巴瘤
DUB:↓ A20,↓ JOSD1,↓ OTUD1,↓USP22,↓ USP28,↓USP34,↓ USP36,↓USP53,↓USPL1,[PRPF8],[ USP9x ],↑BRCC3,↑USP31

黑色素瘤
DUB:[BAP1],↑CSN5,USP8  57,↑USP10,↑USP11,↑USP22,↑USP48 
E3里加斯:Cul1 / Rbx1  67,Cul1 / Skp1 / Rbx1  67

皮肤癌
的DUB:[ 共济失调蛋白-3L ],[Cezanne2],[ CYLD ]  45,[USP17],[MYSM1],[PRPF8],[ USP2 ],[ USP4 ],[ USP5 ],[ USP6 ],[ USP7 ] ,[ USP8 ],[ USP9x ],[USP9Y],[USP13],[ USP19 ],[ USP25 ],[USP26],[ USP28 ],[USP29],[USP31],[USP32],[USP34],[ [ USP36 ],[USP37],[USP42],[USP44],[USP47],[USP48],↓USP49,[USP51],[USPL1],[VCPIP1]

前列腺癌
DUB:  USP2  30

骨髓瘤
DUB:USP7  33
E3连接酶:[ CBL ] 74 
蛋白酶体(蛋白酶催化位点)77,78

胰腺癌
DUB:USP9x  34

脑癌
的DUB:↓Cezanne2,↓ UCHL1,↑ USP1,↑USP3,↓USP11,[ USP15 ] 
E3连接酶:CHIP  7

食道癌
DUB:↑ USP17, ↓ USP46

胃癌
DUB:↓ AMSH,↑ USP1

大肠癌
DUB:[ A20 ],[ Ataxin-3L ],[塞尚],[Cezanne2],[USP17],[MYSM1],[ OTUD3 ],[OTUD4],[ USP2 ],[USP3],[ USP4 ] ,[ USP5 ],[ USP6 ],[ USP7 ],[ USP8 ],[ USP9x ],[USP9Y],[USP11],[USP13],[USP16],[ USP19 ],[ USP21 ],[ USP25 ],[ [USP26],[ USP28 ],[USP29],[USP31],[USP32],[USP33],[ USP34 ],[USP36],[USP42],[USP44],[USP45],[USP47],[USP48] ,↓USP49,[USP51],[USP54],[USPL1],[VCPIP1]

大肠癌
DUBs:↑ AMSH-LP,↓塞尚,↑EIF3H,↓MPND,↓ JOSD1,↓OTUD1,↑ OTUD6B,↑ OTUB2,↓ UCHL1,↑ UCHL1  47,↑ UCHL3,↓ USP2,USP9x  35,↑ USP14  37,↑USP17,↑USP22,↓USP53,↑USPL1 
E3连接酶:  RNF8

肝癌
DUB:[PRPF8],↑ USP14  36,[ USP25 ],[USP38],[USP40] 
E3连接酶:SMURF1  20

尿路癌
DUBs:[ USP2 ],[ USP4 ],[ USP5 ],[USP26],[USP48],[VCPIP1]

肾癌
DUBs:↑  AMSH-LP,[BAP1],↓ UCHL1,↓ USP2,↓ USP5,↑ USP14,↑USP34,↓USP46 
E3里加斯:Cul3 / Rbx1  13,Cul5 / Rnf7  11

膀胱癌
DUB:↑ OTUB1,↑ USP4,USP2  29
E3连接酶:Cul3 / Rbx1  12

白血病
DUB:[BRCC3],↓ USP1,↑USP11,↑USP13,↑USP46 
E3里加斯:TRIAD  23,[ CBL ] 75,76,  Cul5 / Rnf7  10

造血系统癌症
DUB:[ USP9x ]

↓–下调,↑过表达,[] –变异