Pseudouridine-5′-Triphosphate现货供应


Pseudouridine-5′-Triphosphate现货供应

简要描述:Pseudouridine-5′-Triphosphate室用于RNA合成的新产品,主要用于干细胞研究用

详细介绍

产品咨询

Pseudouridine-5′-Triphosphate室用于RNA合成的新产品,主要用于干细胞研究用

 

Reference(s)
Anderson, B.R., Muramatsu, H., Jha, B.K., Silverman, R.H., Weissman, D., Kariko, K. Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L (2011) Nucleic Acids Research, EPub Aug
         
Kariko K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein encoding mRNA. (2011) Nucleic Acids Research.
         
Anderson, B., Muramatsu, H., Nallagatla, S.R., Bevilacqua, P.C., Sansing, L.H., Weissman, D. & Kariko, K. Incorporation of pseudouridine into mRNA enhances translation by dimishing PKR activation (2010) Nucleic Acids Research, 38(17): 5884-5892.
         
Warren et al., Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA, Cell Stem Cell (2010), doi:10.1016/j.stem.2010.08.012.
         
Kariko K, Muramatsu H, Welsh F, et al. Incorporation of Pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. (2008) Molecular Therapy (16)11: 1833-1840.
         
Belliot G, Sosnovtcev SV, Chang KO, Babu V, Uche U, Arnold JJ, Cameron CE, Green KY. Norovirus proteinase-polymerase and polymerase are both active forms of RNA-dependent RNA polymerase. (2005) Journal of Virology, 79(4): 2393-2403.
         
Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modifiation and the Evolutionary Origin of RNA (2005). Immunity, 23(2), 165-175.
         
Madore E, Florentz C, Giege R, Sekine S, Yokoyama S, Lapointe J. Effect of modified nucleotides on Escherichia coli tRNAGlu structure and on its aminoacylation by glutamyl-tRNA synthetase. Predominant and distinct roles of the mnm5 and s2 modifications of
         
Goldberg IH, Rabinowitz M. Comparative utilization of pseudouridine triphosphate and uridine triphosphate by ribonucleic acid polymerase. (1963) J. Biol. Chem., 238(5): 1793-1800.

5-Methylcytidine-5′-Triphosphate


5-Methylcytidine-5′-Triphosphate

简要描述:5-甲基胞苷-5-三磷酸盐是TRILINK公司产品,用于干细胞研究用

详细介绍

产品咨询

5-甲基胞苷-5-三磷酸盐是TRILINK公司产品,用于干细胞研究用,5-methyl-ctp

Synonyms]
5-methyl-dCTP
5-methyldeoxycytidine triphosphate
CPD-1094
5-methyl deoxycytidine-5′-triphosphate
5-methyl-2′-deoxycytidine-5′-triphosphate
cytidine 5′-(tetrahydrogen triphosphate), 2′-deoxy-5-methyl-
[[[5-[(4-amino-5-methyl-2-oxo-1H-pyrimidin-1-yl)]-3-hydroxy-tetrahydrofuran-2-yl]methoxy-hydroxy-phosphinoyl]oxy-hydroxy-phosphinoyl]oxyphosphonic acid

[Structure]
 

[ Properties Computed from Structure]
 

Molecular Weight 481.183503 [g/mol]
Molecular Formula C10H18N3O13P3
XLogP -5.9
H-Bond Donor 6
H-Bond Acceptor 14
Rotatable Bond Count 8
Tautomer Count 3
Exact Mass 481.005247
MonoIsotopic Mass 481.005247
Topological Polar Surface Area 248
Heavy Atom Count 29
Formal Charge 0
Complexity 868
Isotope Atom Count 0
Defined Atom StereoCenter Count 0
Undefined Atom StereoCenter Count 3
Defined Bond StereoCenter Count 0
Undefined Bond StereoCenter Count 0
Covalently-Bonded Unit Count 1
Description
5-Methyl-dCTP is widely used for construction of cDNA libraries
 
Incorporation of 5-Methyl-dCTP
M-MuLV Reverse Transcriptase
Klenow Fragment of DNA Polymerase I
Sequenase DNA Polymerase
(Taq Polymerase, Vent) *
Incorporation of Hg-dCTP
DNA Polymerase I

References to 5-Methyl-dCTP
Lefaucheur et al. (1998) Evidence for three adult fast myosin heavy chain isoforms in type II skeletal muscle fibers in pigs. J. Anim. Sci. 76:1584.
Nelson et al. (1993) Restriction endonuclease cleavage of 5-methyl-deoxycytosine hemimethylated DNA at high enzyme-to-substrate ratios. Nucl. Acids Res. 21 (3):681.
Asamizu et al. (1999) A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3433 non-redundant expressed sequence tags. DNA Research 6:369.
* Wong et al. (1991) PCR with 5-methyl-dCTP replacing dCTP. Nucl. Acids Res. 19 (5):1081.
Reference to Hg-dCTP
Banfalvi et al. (1995) Effect of mercury substitution of DNA on its susceptibility to cleavage by restriction endonucleases. DNA Cell Biol. 14 (5):445.
 

 

N-1014-1 5-Methylcytidine-5′-TP 1umole 1317.5
N-1014-10 5-Methylcytidine-5′-TP 10umoles 10625
N-1014-5 5-Methylcytidine-5′-TP 5umoles 6205

 

Reference(s)
Kariko K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein encoding mRNA. (2011) Nucleic Acids Research.
         
Kormann M, Hasenpusch G, Aneja M, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. (2011) Nature Biotechnology 29:154–157.
         
Anderson, B., Muramatsu, H., Nallagatla, S.R., Bevilacqua, P.C., Sansing, L.H., Weissman, D. & Kariko, K. Incorporation of pseudouridine into mRNA enhances translation by dimishing PKR activation (2010) Nucleic Acids Research, 38(17): 5884-5892.
         
Warren et al., Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA, Cell Stem Cell (2010), doi:10.1016/j.stem.2010.08.012.
         
Kariko K, Muramatsu H, Welsh F, et al. Incorporation of Pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. (2008) Molecular Therapy (16)11: 1833-1840.
         
Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modifiation and the Evolutionary Origin of RNA (2005). Immunity, 23(2), 165-175.
         
Lefmann M, et al. Novel Mass Spectrometry-based tool for genotypic identification of mycobacteria. (2004) Journal of Clinical Microbiology, 42(1): 339-346.
         
Hartmer R, Storm N, Boecker S, Rodi CP, Hillenkamp F, Jurinke C, van den Boom D. RNase T1 mediated base-specific cleavage and MALDI-TOF MS for high-throughput comparative sequence analysis. (2003) Nucleic Acids Res., 31(9): e47.
         
Nguyen A, Zhao C, Dorris D, Mazumder A. Quantitative assessment of the use of modified nucleoside triphosphates in expression profiling: differential effects on signal intensities and impacts on expression ratios. (2002) BMC Biotechnology, 2(1): 14.
         
Van Rompay AR, Norda A, Linden K, Johansson M, Karlsson A. Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine-cytidine kinases. (2001) Mol Pharmacol., 59(5): 1181-6.